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1. Introduction

Twistor string theory [[]-[] offers an approach to formulating a QCD string. Unlike con-
ventional string theory, the twistor string has a finite number of states. These include
massless ones described by N = 4 super Yang Mills theory coupled to N = 4 conformal
supergravity in four spacetime dimensions. The original theory [i] is a topological string
theory, where a finite number of states arises in the usual way. The alternative formula-
tion [f, fi] has both Yang-Mills and supergravity particles occurring in an open string sector.
Here the absence of a Regge tower of states is due to the absence of operators involving
momentum for massive particles. Since the twistor string theory is some N=4 Yang-Mills
field theory coupled to N=4 conformal supergravity and possibly a finite number of closed
string states, we infer that this field theory system is ultraviolet finite.

In [fl], gluon amplitudes with ¢ loops, and with d 4+ 1 — ¢ negative helicity gluons
and the rest positive helicity gluons, were associated with a topological string theory with
D-instanton contributions of degree d. Beyond tree level, the occurrence of conformal
supergravity states is believed to modify the gluon amplitudes from Yang Mills theory.
The other version of twistor string theory [B] uses a set of first order ‘b,c’ world sheet



variables with open string boundary conditions, and world sheet instantons. The target
space of both models is the supersymmetric version of twistor space, CP31%. In H, a
path integral construction of the tree amplitudes outlined in [J], is used to compute the
three gluon tree amplitude. Some n-point Yang-Mills and conformal supergraviton string
tree amplitudes are derived in [B], which discusses both models and general features of loop
amplitudes. Some earlier computations of conventional field theory amplitudes in a helicity
basis can be found in [{J—{ff] for Yang Mills trees, [§, [ for gravity trees, and [[(]-[[4] for
the Yang Mills loop. General features of the twistor structure of the Yang Mills loop are
described in [, [L6].

In this paper, we calculate an expression for the one-loop n-gluon amplitude in
Berkovits’ open twistor string theory. In section 2, we review the world sheet action,
establishing a convenient notation and selecting a gauge where the world sheet abelian
gauge fields have been gauged to zero. Then the topology, or instanton number, resides in
the boundary conditions, for an open string, or the transition functions relating different
gauge patches on the world sheet, for a closed string. We discuss the classical solutions on
the sphere, disk, torus and cylinder.

In section 3, we discuss the canonical quantization of the string, gauge invariance in the
corresponding operator formalism and the construction of vertex operators corresponding
to gluons.

In section 4, the n-point gluon open string tree amplitudes are calculated, and they
match the Parke-Taylor [[7, [[§], up to double trace terms from the current algebra. This
extends the three-point amplitudes found via a path integral in [@], and provides an explicit
oscillator quantization of some of the tree amplitudes found in [f].

In section 5, the gluon open string one-loop amplitudes are described as a product
of contributions from twistor fields, ghost fields, and the current algebra. We compute
the n-gluon one-loop twistor field amplitude. Both the n-point tree and loop amplitudes
are computed for the maximally helicity violating (MHV) amplitudes, where the instanton
number takes values 1,2. This can be extended straightforwardly to any instanton number,
leading to amplitudes with arbitrary numbers of negative and positive helicity gluons.

In section 6, the general expressions for two-, three- and four-point one-loop current
algebra correlators are given for an arbitrary Lie group. They are given in terms of Weier-
strass P and ¢ functions. We expect to discuss the derivation of these expressions and
their generalizations, using recursion relations, in a later paper [[[J.

In section 7, we combine the parts and construct the four-point MHV one-loop gluon
amplitude of the open twistor string. We show how the delta function vertex operators
of the twistor string lead to a form of the final integral that is a simple product of the
current algebra loop and the twistor fields loop. We do not discuss here the infrared
regularization of the loop amplitude, nor how the gauge group of the current algebra is
ultimately determined [R(].

2. The action and classical solutions

Equations of motion and boundary conditions. The world sheet action for the



twistor string introduced by Berkovits can be written in the form
S = SYZ + Sghost + SG (21)

where Sg represents a conformal field theory with ¢ = 28 and Sy z is given by
I I _pv 12
Syz = /z YD, Z1s+Y, " D, Zip) g2d*x (2.2)

with D, = 0, — 14, and 1 < I < 8, and the fields Zg, Zp and Y, are homogeneous
coordinates in the complex projective twistor superspace CP314 and are world-sheet scalars,
pseudo-scalars and vectors, respectively. For the action to be real, the fields must satisfy
the conditions Y# = —Y!# for the bosonic components (1<I<4)and Yin = yIn for
the fermionic components (5 < I < 8), Z;5 = Z15, Z1p = Zrp, but we must also have
A_u = —A,, ie. A, has to be pure imaginary.

The action (R.1)) gives rise to the equations of motion

D,Zs+¢,"D,Zp =0, D, Y* =0, D, e"Y, =0 (2.3)
where D), = (0, + z'Au)g%, to the constraint,
YHZs+Y,eMZp =0, (2.4)
and to the end condition on the open string,
Y¥tn,6Zs + Y, n,6Zp =0, (2.5)
where n” is a vector normal to the boundary. The end condition (R.5) will be satisfied if
Y, ntcosa +Y,e"'n,sina =0, Zgsina — Zpcosa =0, (2.6)

for some function «, varying over the boundary, and continuous up to multiples of w. The
function « changes under gauge transformations, which we shall now discuss.
In the case of a Euclidean signature for the world sheet, we can write

Y*D,Zs + Y D, Zp =Y*D,Z +Y?D;Z , (2.7)

where z = x1 +iz9, 2 = 1 — ix9, £ = Zg — iZdp, Z = Zg+iZp, D, = 0, — A,
A, = 1(A; —iAy), etc. With this notation, the equations of motion become

Ds:Z =D,Z =0, DY?=DLY*? =0, (2.8)
together with the constraints
Y?Z=Y?*Z =0,
the boundary conditions

Z=UZ, Yon, = —-U"'Y?n;, (2.9)

where U = ¢*® in terms of (R.6), and reality conditions Z = Z, Y? = —Y? for bosonic
components, and Y? = Y?Z for fermionic components, A, = —A;. The reality conditions
imply that on the boundary |U| = 1.



Gauge invariance. The action has two abelian gauge invariances,
Y?— g Y3 Zw—gZ As— As—ig l0sg, (2.10)

Y2 g 'Y, Ze—gZ, A, — A, —i§5710.3, (2.11)
where g = e¥1% § = e7¥*% each in GL(1,C), so that

Ay— A+ 00+ ¢€,"00, (2.12)

and ¢, 1 need to be pure imaginary, i.e. § = g (reducing the gauge group to one copy of
GL(1,C)), if the reality condition on A, is to be maintained. Az, A, can be thought of
as components, Az, A, taken from different gauge potentials, A, ./Zlﬂ, associated with the
transformations g, g, respectively.

The gauge invariance of the theory can be used in general to set the potential A, = 0,
with the vestige of the gauge structure residing in the boundary conditions or the gauge
transformations which relate the fields on different patches, in the case of world sheets with
non-trivial global topology (and in the components A, As, that do not appear explicitly
in the action). In a gauge with A, = A; = 0, the equations of motion for Z, Z become
0:72 =0,2=0,ie Z=2(2),7Z=2Z(2).

Solutions on the sphere. If the world sheet is the sphere 52, corresponding to closed
string boundary conditions, mapped stereographically onto the plane, the potentials are
defined by functions on two patches, A7 on S7 = {z:]z] > 1 —¢} and A7 on S = {z:
|z| <1+ €}, for some € > 0, with

AZ — AS = —ig7l0.g, A7 —AS =—ig'o.g  forlde>|z>1—e  (2.13)

We can apply gauge transformations v~,5~,v<,5<, on the two patches separately which
map all of A7, A7, AS, AT to zero, so that the gauge transformations relating the patches
become

h=~"g(v)™Y, h=3"§(3°)"!, sothat O:h=0,h=0

implying h = h(z),h = h(Z). Maintaining the reality conditions implies that h = h. As z
encircles the unit circle |z| = 1, the phase of h(z) will increase by —27n for some integer
n, so that log(z"h(z)) is single-valued in the annulus 1 +¢ > |z| > 1 —e. By writing
log(z"h(2)) as the sum of two functions, one regular at the origin and the other at infinity,
we can obtain gauge transformations on the two patches that will maintain A = A =0

while replacing the transition function h(z) by z=". Correspondingly, h(Z) is replaced by

Z~™. Thus, for the sphere, we can always choose a gauge in which the components of
the potential occurring in the equations of motion are zero and the Z, Z fields on the two

patches are related by
Z7(2) = 27" Z%(2), Z7(2) =2 "Z<(%). (2.14)

(See appendix A.) These conditions have a solution provided that n > 0, in which case
Z<(z), Z<(%) are polynomials of order n which are complex conjugates of one another.



Solutions on the disk. If the world sheet is the disk, D? = {z : |z| < 1}, appropriate
to open string tree amplitudes, we can again choose a gauge in which 4, = A; = 0,
so that Z and Z are analytic functions of z and Z, respectively, and the residue of the
gauge structure is only left in the boundary conditions (R.9). If the phase of U(z) in
this equation changes by —27n, n an integer, as z goes round the unit circle, we can
write log(2" U(z)) = f<(2) + f>(2) on the unit circle, where fx(z), f<(z) are defined
and holomorphic in |z] > 1 and |z| < 1, respectively. The fact that |[U| = 1 on the
unit circle implies that f-(z) = —f<(1/Z). If we now apply the gauge transformation
y=e f>0/2) 5 = /<) U ~yU5~1 = 27" on |z| = 1. The boundary condition only has
non-trivial solutions for n > 0 and the general solution satisfying the reality and boundary

conditions is then

n n
Z(2) =Y Zma™,  Z(2)= Y Zpnz", (2.15)
m=0 m=0
where Zy, = Zy—mm.

Solutions on the torus. If the world sheet is a torus, T2, corresponding to a closed
string loop amplitude, we can describe it by identifying points of the complex plane related
by translations of the form z — z+my +ni7, my,n1 € Z, for a given modulus 7 € C. The
various copies of the fundamental region {z = 2+ y7 : 0 < x,y < 1} have to be related by
gauge transformations, gq, Ja,

Az(z+a) = As(2) —ig; 0290, AL(z+a) = A.(2) —i§, 1 0.Ga, (2.16)
where a = m1 + ny7, my,n1 € Z. The gauge transformations have to satisfy

9a+b(2) = ga(z +0)gb(2) = gv(2 + a)gs(2), (2.17)

and similarly for g,, and the reality condition g,(z) = §q(2).

We can apply gauge transformations v,5 to A, A to set A, = As = 0 over the plane,
changing the gauge transition functions g, (2) — he = (2 + a)ga(2)7(2) ™Y, Ga(2) — he =
3(z + a)ja(2)7(2)"1, where hq, hq are holomorphic functions of z, Z, respectively. In this
gauge,

Z(z+a) =h(2)Z(2),  Z(z+a)=he(2)Z(2). (2.18)

Writing hq(z) = ea(?), (B.17) implies
p1(z+7)—pi1(z) — pr(z + 1) + pr(2) = —27n, (2.19)

for some integer m, which describes the topology of the solution. A particular gauge
transformation that possesses this property and, more generally, satisfies (R.17), is

1O (2) = exp <m <z + 9) + imnming + ma> (2.20)

Im7 2

where 1,1 = 14 + 5. In fact, if hy(2) satisfies (R.19), we would need to make a further
gauge transformation to bring it into the standard form (R.2().



If we let 1, = mmye — i€, the translation property of 7 is
Z(z+1) = €™ Z(2),  Z(z+7)=e TR 7(2), (2.21)

which are the defining relations for an n-th order theta function with characteristics e, ¢,
and we must have n > 0 for non-trivial solutions. If the usual theta function is denoted by

0 [:/} (v,7) = Z exp {im(m + Le)2r 4 2mi(m + Le)v + mime + Imiee'}, (2.22)
meZ

the space of n-th order theta functions is spanned by the n functions

1
~(e+2
9["(6 / p)

€

} (nz,nt), p=0,1,...n—1. (2.23)

Thus each of the components of Z has an expansion of the form

P €

n—1 1 c
Zl(z) = ZCIH ["( * QP)} (nz,nT), (2.24)

p=0
where 1 < I <8.

Solutions on the cylinder. For an open string loop amplitude, we need to consider the
world sheet being a cylinder, C2, which we take to be the strip region {z : 0 < Re z < 1}
with z identified with 2 + n7, where 7 is pure imaginary. The equations (2.16) and (2.17)

hold but with a,b restricted to be integral multiples of 7. The fields Z(z), Z(z) have to

satisfy boundary conditions on Re z =0, 1,

Z(—iy) =Uo(y)Z(iy),  Z(3 —1iy) =Ur(y)Z(5 +iy), [Uo(y)| = |UL(y)| =1,

NI

3
for real y.

We can again work in a gauge in which A, = A; = 0, where Z, Z are analytic functions
of z, Z, respectively. We can find the gauge transformation vy = €% to take us to such a
gauge by solving the equation Az = —d5pp and we can impose the boundary condition py =
1pp on Re z = 0, where Up(y) = W) with ¢o(y) € R. Under the gauge transformation,
Z v Z, Z — 02, so Up(y) — Fo(iy)Uo (y)0(iy) !
a gauge in which A, = A; = 0 and Z, Z are analytic functions of z, Z, respectively, and

= 1 for real y. So we can choose

Z,7 are real on Re z = 0. In this gauge we can extend the definition of the fields into

the region {z : —1 < Re z < 0} by reflection about Re z = 0: Z(z) = Z(-2) = Z(—=2),
A.(2,Z) = —Asz(—Z2,—2) = A.(—%, —2), thus obtaining fields defined smoothly in the whole
region {z: —1 <Re z < 1}.

Similarly we can define another gauge in which A, = A; = 0 and Z(z),Z(Z) are

analytic functions real on Re z = 1 by making a gauge transformation which maps U% — 1.
In this gauge we may extend the fields over the whole strip {z : 0 < Re z < 1} by reflection
about Re z = L. If Z’, Z' denote the fields in this second gauge, Z'(z) = Z'(1 — z). If 7,7
are the gauge transformation that relate the two gauges we have constructed, Z'(z + 1) =
Z2'"(=2) =v(—2)Z(—2) = v(—2)Z(2), for —1 < Re z < 0. So, if we assume we can extend




the definition of the gauge transformation y(z) from 0 < Re z < 1 to 0 < Re z < 1, we
have, for —1 < Re z <0,

Z(z+1)=g1(2)Z(2), where g¢1(z) =~v(z + 1)717(—2).

Thus we have constructed from the solution defined on the cylinder, C2, one defined
on the torus, T2, for which 7 is pure imaginary, defined in a gauge in which Z(z) = Z(—2).
For 7 pure imaginary, the complex conjugate of (R.23), evaluated with z replaced by —z, is

1 /=
~(e+2p
0["(_E/ )} (nz,nt), p=0,1,...n—1. (2.25)

This is in the space of functions (R.24) if and only if € is real and ¢ = 0 or 1. The
general solution for Z for the cylinder is thus given by (R.24) with these restrictions on

€, €.

3. Quantization and vertices

Canonical quantization. The quantum theory involves the twistor fields Y/, Z1 1 <
I < 8, the current algebra, J#, ghost fields, b, ¢, associated with the conformal invariance,
and ghosts u, v, associated with the gauge invariance, and the world sheet gauge fields
Ay, .,Zlﬂ which have no kinetic term. The conformal spins and contributions of the various
fields to the central charge of the Virasoro algebra are shown the following table:

Y | Z|J N u|v]|b] ¢
U(1) charge —-1{1] 0 |0]0|0O]O
conformal spin, 7 | 1 | 0| 1 |1]0]2]-1
central charge, ¢ 0 28 —2 —26

The fields Z7,1 < I < 8, comprise four boson fields, A%, 1%, 1 < a < 2, and four fermion
fields M, 1 < M < 4; the gauge invariance insures that the Z! are effectively projective
coordinates in the target space CP31*. As we saw in section 2, in a gauge in which A, =
A, =0and A; = A; =0, \*(2), u%(2),9™ (2) are holomorphic, and the only further effect
of the gauge fields is through their topology. Since the contribution to the Virasoro central
charge ¢ from the fermionic and bosonic twistor fields cancels to zero, and the ghost fields
have ¢ = —26 — 2, the current algebra J# is required to have ¢ = 28.

The mode expansion of the basic fields takes the form
O(z) =) Ppz Y (3.1)

where ® stands for Y, Z,u,v,b,c, or J4, and J denotes the conformal spin of the relevant
fields. The vacuum state |0) satisfies ®,,|0) = 0 for n > —7.The canonical commutation

relations for the basic fields are

[[Z;in’ Yy{]] = 5ij5m,7m {Cma bn} = 6m,fna {Uma un} = 5m,7m (3.2)



where the brackets [,] denote commutators when either 7 or j is not greater than 4 and

anticommutators when both ¢ and j are greater than 4; and

[TA T8 = ifAB oIS, + kmbm,—nd?B. (3.3)

mr“n
These lead to the normal ordering relations

5

ZEYIQ) = Y0+

(3.4)

and similar relations for ¢,b and v, u.

The Virasoro algebra is given by

L(z) = — Z (Y (2)0Z7(2) 1 — s u(2)0v(z) : +2: Dc(2)b(2) : — : Ob(2)e(2) : +L7(2),
J
(3.5)
where the moments of L7(z) constitute the Virasoro algebra associated with the current
algebra.
The BRST current is

Q(2) = c(2)L(2) + v(2)J(2)— : c(2)b(2)dc(z2) : +20%¢(2), (3.6)

where
L(z)=— Z (Y (2)0Z7(2) - — s u(z)0v(z) - +L7(2).

J
Q(z) is a primary conformal field of dimension one with respect to L(z), and the BRST
charge Qo satifies Q3 = 0, where Q(2) = Y., Qnz"""1. L(z) generates a Virasoro algebra
with total central charge zero.

Gauge invariance. The current associated with the gauge transformation is

8
J(z) = —P(z) ==Y _ Pi(2), (3.7)
j=1

where
Pi(2) =YI(2)Z7(2) : = Zaf;ﬂz*mfl for each j; (3.8)
m
then
(s ad] = €69y lag, Y] =Y 009, (4, Z)) =~ 27,67, (3.9)
where € = —1, if i < 4, and € = 1, otherwise. Hence
[al | YI(2)] = 2™ (2)6%, [al  Z7(2)] = —2™Z7(2)6%.

. i
If we introduce e% so that
@ J,—ah _ 3 _ isij
eloaye = ap — €'0",



where € is as in (B.9), the normal ordered products

x o1 X7 (2) x = ,ta] 1, —n L\ +aq
<e X=e OeXp{ZFZnanz }exp{q:znanz z+%, (3.10)
n<0 n>0

define fermion fields, which can be identified with Y7(z), Z/(z) for j > 5. In general,

formally,
, , , 1,
X7(z) = g} + af log z — ; Eaﬁlz "
n

Although, in the fermionic cases j > 5, we have an equivalence between the spaces gener-

ated by er, Zﬂ;, on the one hand, and eiqé, aj,, on the other,

Yi(z) = xeX (@) x Zi(z) = xe X B x j>5 (3.11)
in the bosonic cases 7 < 4, we need to supplement eiqg,a% by two fermionic fields
& (2),1(2),

{&nm} =0"0mn:  mml0) =0,n>0, &J0)=0,n>1.

Note that in this case &,7, 7%, a generate a larger space than the fields Y, Z. Then we can

write _ _
Vi(z) = e X xagi(z),  Zi(z) = xeXM@xpi(z), <4 (3.12)

If g(2) is an analytic function, representing a gauge transformation, defined in some
annular neighborhood of the unit circle, |z| = 1, with winding number d as z goes round

the unit circle,

g(z) = 2% (), alz) = Z a2z =a~(2) + ap + a” (2), (3.13)
where - -
a“(z) = Zanzfn, a”(z) = Z anz™ " (3.14)
n>0 n<0
Defining P(2) as in (B.7), with
8
P(z) = Zanz_"_l, et — H et
n 7j=1
let
1 S < >
Pla] = 5 P(2)a(z)dz = Z.oana_n = Pla~] + apap + Pla”],
Pla~] = Za,nan,
n<0
Pla”] = Za,nan
n>0



So, if
Uy = edaoePlal — edqoep[o‘ﬂeaoaoep[o‘ﬂ, (3.15)

noting that the a,, commute among themselves,

U Y (U, ' = g(2) 7Y (2),  UyZ(2)Ug " = g(2) 2 (2).

The vertex operators Vj(z;) are gauge invariant if [a,, Vj(2;)] = 0, so that
eIV (z))e P = Vi(z)), (3.16)
we have
(0[UVi(21)Va(22) - - - Vu(2)|0) = (0]e™ Vi (21)Va(22) - - - Via(20)]0), (3.17)

showing that the winding number, the topology of the gauge transformation, is the only
part affecting the amplitude. The winding number d can be regarded as labeling different
instanton sectors, which one needs to sum over, described by the operator e,

Because the trace

tr (amVi(21)Va(22) . .. Va(zn)wh®) = wmtr (Vi(21)Va(z2) . . . Valzn)w 0 an,)
= wmtr (amvl(zl)Vg(zg) . Vn(zn)wLO) ,

we have

tr (amVi(z1)Va(22) . ... Vn(zn)wLO) =0, if m#0,

so that
tr (UyVi(21)Va(22) - Vi (zn)w™) = tr (edqouaon(zl)Vg(zQ) . Vn(zn)wL“) . (3.18)

showing that the trace depends on the instanton number d and ©* = 0% It is necessary

QQ

to sum over d and average over u = e* with respect to the invariant measure du/u = day.

The evaluation of such traces is discussed in appendix C.

Scalar products. The reality conditions on Y/, Z/ imply that

(zH' =27, (3.19)
Yt ==/ for 1<J<4, (¥)I=Y/, for 5<J<8. (3.20)
It follows from (B.11]) and (B.19) that
VI jedto = edoyl  ZI el = ezl for 1 <T<8. (3.21)
The modes Y,!, Z! satisfy the vacuum conditions
Yioy=0, n>0, Zloy=0, n>1 (3.22)

If we take a single fermionic component of Y, Z! in isolation (i.e. 5 < I < 8), denoted
Y, Z, scalar products can be evaluated from the basic relation (0/Z|0) = 1. With ede

,10,



defined for this component similarly to the above for integral d, we can show that Zy|0) =
e~9|0), and, more generally, Z,_q. .. Zy|0) = e~%0|0), for positive integers d, so that

O Z_y4...Z0) =1, (3.23)

and (Ole%®°Z . ...Z_, |0) = 0 for other products Z_,, ...Z_,  (unless m = d+ 1 and
the n1,...,n441 are a permutation of 0,...,d).

For a single bosonic component of Y/, Z! in isolation (i.e. 1 < I < 4), again denoted
Y, Z, scalar products can be evaluated from the basic relation

01 (Z0)|0) = / F(Zo)dZ,  or, equivalently,  (0[¢*%0[0) = 6(k).  (3.24)
In the bosonic case, the matrix elements of e° are specified by
(0]e™* %0 90 ¢k 20| 0) = (0|e0 e 716 7%0|0) = §(K')(k) (3.25)

and, analogously to (B.23),

d
(0]ed® exp Z kiZ_j 510y =[] o(ky), (3.26)
§=0
equivalently,
<0’€dq0f(ZQ, ‘e 7Z,d)’0> - /f(Zo, ey Z,d)dZO, ‘o ,dZ,d. (327)
dqo

[Alternatively, instead of including the factor e, we could calculate tree diagrams
working in a twisted vacuum |0) = e%dq°|0>, where Y, Z have modified conformal dimen-
sions 1 + 1d and —1d, respectively. Here we will take the former approach as a basis for
constructing loop contributions.]

In the cases at hand, with all eight components of Y, Z! present, the expressions have
an overall scaling invariance under Z7(z) — kZ'(z),Y(2) — k~'Y!(2), which would cause
the integral over Zé ,1 < I <4, to diverge, unless the invariant measure on this group is
divided out to leave the invariant measure on the coset space. This invariant measure can
be taken to be dys = dZ7/Z7, with the various choices of j giving equivalent answers and

vacuum expectation value has the form Z

OF2)I0) = [ £ Zo/rs = [ 1(20)28d' 20023 (329
where Z, = (Z}, 22,23, Z3), for any choice of jo. [Note that, before the vacuum expecta-
tion values are taken on the fermionic modes, Zé ,5 < I <8, the integrand is a homogeneous

function of all the Z!, but after this has been done, the residual function f(Z,) has the
homogeneity property f(kZ,) = k=*f(Z,)].
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Vertices. The target space of the string theory is the twistor superspace CP3*. We use

A
1 3
Z = 1;& : W:<Z2>, WZ(Z‘*)’ (3.29)
¢ﬂ

where the ¢!,1 < I < 4 are anticommuting quantities and A, u € C2, to denote homoge-
neous coordinates in this space, identifying Z and kZ for nonzero k € C.

The vertex operator corresponding to the physical state |¥) = f(Zy)J4,|0) of the
string, which corresponds to a gluon state, is

V(T 2) = f(Z(2))JA(2). (3.30)

The state |¥) is gauge invariant provided that f(Zp) is an homogeneous function of
Zo, f(kZy) = f(Zo) for nonzero k € C, and then V(V,2) satisfies (B.16)). f(Zo) is the
wave function describing the dependence of the state ¥ on the mean position of the string
in twistor superspace. Leaving aside the need to take account of the homogeneity of the
coordinates, the wave function for the string being at Z’ would be []; §(Z%(2)—Z"1). Thus,
allowing for this, the wave function for Z(z) to be at Z' = (w,w,0) is

4

W(z) = / [T o063 (2) — 7)otkn® () — ) T (k') — 8°) d—:, (3.31)

b=1

noting that d(ky—0) = kiy—0 is the form of the delta function for anticommuting variables.
[(B-31)) is invariant under Z(z) — k(2)Z(z) and separately under Z' — kZ')

To obtain the form of the vertex used by Berkovits and others [B]-[f], use the first
delta function, §(kAl(2) — 1) to do the integration in (B.31]), to obtain

oG- 2 DAES-5) o

b=1
Then multiply by exp(iw?7,), to Fourier transform on w®, and by

1 1
A(0) = Ay +0°4, + 59”9641,0 + gebecedAbcd +0'0%0%0* A_, (3.33)

(so that Ap. corresponds to the six scalar bosons, A, and Apeq to the two helicity states of
the four spin 1 fermions, and A4 to the two helicity states of the spin one boson, in the

(£1,4(£1),6(0)) supermultiplet of N=4 Yang Mills theory) and integrate with respect to
w, 0, yielding

1 A2 g2 Ot
et (3 ) e {5
1

7le 771215;@ ngbcd 7T141234
A++ﬁ¢Ab+<—> §w¢AbC+< ) iwwflbcﬁ(ﬁ) Yttt AL

X

)

A AL
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where b, ¢, d are summed over. This is essentially the vertex used by Berkovits, except that
he omits the Ay, Ape, Apeq terms.

The form of the vertex that it will be convenient to use in what follows is that obtained
from (B.31)) by Fourier transforming on w® and multiplying by A(f) and integrating with
respect to 0%,

7% dk & a ay ikub(2)7m
W(z) = - Hé(k)\ (z) —7)e
a=1
b k2bc kgbcd 41,0234
[y kg A gy A+ R A (330

where ¢® = ¢*(z). So, the vertices for the negative and positive helicity gluons are

2
VAz) = / dik® T 6(kA () — ) e JAG) L (22 (2P ()it () (3.35)

a=1

and
A dk & a a\ iku®(2)7a TA
VA(2) = ?Ha(m (z) — )k (D)7 JA(3), (3.36)
a=1
respectively.

Cohomology. The standard argument that only the states in the cohomology of ) con-
tribute to a suitable trace over a space H, provided that Qf = @ and Q> = 0, can
be phrased as follows. Assuming the scalar product is non-singular on H, we can write
H=®®N &N, with the following holding: N = ImQ; ® & N = Ker Q; N, N are
null and orthogonal to ®; and N' = QA. The cohomology of Q = Ker Q/ImQ = .
Taking bases |e,,) for @, |n;) for N and |7;) for N, with (em]en) = €mbmn, (nilftj) = 8,
(ni|nj) = (i) = (nilem) = (ilem) = 0, then the resolution of unity is

1= emlem)(eml + D Ina) (sl + > [7) (na].

Q|f;) is a basis for NV, so |n;) = M;;Q|7;) and &;x = M;;(fg|Q|7;). Then MT is the

inverse of the matrix (n;|Q|n;), M;; = Mj;, and
1= emlem){em| + > QUi Mij(fs| + > i) My (7is] Q.

Then if we consider a trace over H, Try (A(—l)F ), of an operator A, which commutes
with @ and anticommutes with (—1)f |

Trye (A(=1)F) =3 emlem| A lem) + 30 Mij (7| AT QAg) + 30 Mij (Rl QA(=1)" |7y)
=>emlem|Alem) = Tre(A).

provided that F' =0 on .
We are interested in Q = Qo, the zero mode of the BRST current (B.6), and F is the
fermion number for the ghost fields, so that (—1)¥ does indeed anticommute with Q.

,13,



If we consider

A = edao / H dprVef* (py)wko (3.37)
r=1

where the vertex operators VA(p) are given by (B.36) and (B:3§), @ commutes with the
integral of the product vertices as consequence of their having conformal spin 1 and U(1)
charge 0, but it does not commute with e,

[Q,e%0) =d Z C_pape®.
n
To correct for this, replace e%0 by e0e=d=nc-nun in (B37),
n
A = %0 dEnc—nun / 11 dervid (pryw™, (3.38)
r=1

ensuring that only states in the cohomology of @ contribute to the trace tr(A(—1)). A
similar instanton number changing operator is used in a different context in [RI]. The
inclusion of the factor e~9»¢-n%n does not change the value of this trace as we can see by

expanding it in a power series.

4. Tree amplitudes

In this section we compute the N-gluon MHV twistor string tree amplitudes, first with
oscillators, and then compare with the path integral method, in preparation for computing
the loop amplitude, which will be given in terms of a factor times the tree amplitude. The
three-point trees were derived in [}, and various N-point trees were computed in [{] using
aspects of Witten’s twistor string theory [i].

The n-point tree amplitude, corresponding to gluons, in instanton sector d is given by

Atree — / (Ol VA (20) V2 (22) . VA" (2)[0) [ dov farascs (4.1)

r=1

where dvy)s is the invariant measure on the Mobius group dvyg is the invariant measure on
the group of scale transformations on Z (as in (B.28)), and VA is given in (8.36)) or (B.35)
as € = +. It follows directly from these expressions and from (8.23) that the n-point tree
amplitude for gluons vanishes unless the number of negative helicity gluons is d + 1.

The d = 0 sector. If d = 0, we may take ¢4 = — and all other ¢, = +. In the
vacuum expectation value (0|V (zl)V_;42 (z2) ... Vf" (2,)]0) the Z(z,) can be replaced by
the constant Zé , because all the ZI, for n # 0, can be removed by annihilation on the
vacuum on either left or right. The resulting expression involves integrals over the zero
modes, )\é, A2, ,u(l), ,ug of Z!, 1 < I <4, and the n scaling variables k, associated with the n
vertices as in (B.34) and (B.39).
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Leaving aside the current algebra from the vacuum expectation value of the J4(z,),
and dvyps, the amplitude is proportional to

2

r=1 r=1a=1 a=1

n n 2 n 2
= (W] T ot = ko) it (Z m) [[ar/as @2
T r=1 a=1

r=1a=1 a=1

involves n + 1 integrals from d"kd?)\/dys and 2n + 2 delta functions, leaving in effect n + 1
delta functions after the integrals have been done. For n > 3, this exceeds the number
required for momentum conservation and the amplitude vanishes.

So for d = 0, we need only consider n = 3; then the amplitude is

3 n 2
Alree — / ;‘1:[ 1:[ U — k) fArA24s H b (Zk wm> dX?/dvyg,  (4.3)

a=1 r=1
where the invariant measure of the Mobius group, dvas, which replaces the three ghost

fields (0| []2_; ¢(2,)|0), has cancelled against the contribution from the tree level current
algebra correlator that we have normalized as (0|J{*(21)J5' (22)J5 (23)|0) = fArA243 (2 —
29) " Y(z9 — 23) 71 (23 — 21) 1. The current algebra arises from the ¢ = 28, Sg sector of the

world sheet theory. The structure constants f48¢ supply the non-abelian gauge group for

the D = 4, N = 4 Yang Mills theory, as explained in [g.
Now, using the three §(m,! — k.A!) to perform the k, integrals:

1\3 3
ee (m1°) 2 1A N’ A1 A A
rJrJr — H5 <Z T 7'rm> 7T217T31 /71_115 <7‘rr )\1> — fArA2As

where we have also made the choice dys = dA'/A! in line with (B:2§). Note that, alter-
natively, we could have used the &(m,.2 — k.\?) delta functions to perform the k, integrals

obtaining
3 3
) <Z 7rr27rm> rather than ¢ <Z 7Tr17rm> ;
r=1 r=1

together these four delta functions correspond to momentum conservation. To draw this
out as an explicit overall factor, note that

3 3 \2 3
g 7rr27’rm = g <7Tr2 — Wr1ﬁ> Tre When E 7rr17’rm =0
r=1

r=1 r=1

and the Jacobian to change between

H §(m?— 1)\ and 1) Z 7Tr2_77r1)\_2 Tra
>\1 a=1,2 Al

r=2,3

is 91732 — To2T31 = (2, 3].
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So, writing

3
H5 (Z 7Trb7rm> = (2,7,
a,b r=1

_ m )3 AW Y
At = 542, 7,)(2, 3] / m) <7T12 - w11ﬁ> = FAA24s

- 54(zwrﬁr)7[2’ 3P fhrAads, (4.4)

Writing the general polarization vector, €., of the r-th gluon, as the sum of positive
and negative helicity parts, ¢, = € + ¢, . These parts can be normalized by choosing
vectors s,; and 3., are defined such that m,%5,, = 1 and ﬁgsrd =1, for each r, and setting

+_opts - _ A-
= Al 54T, €, = A, TraSra- (4.5)

E'f‘ r

Multiplying the appropriate amplitudes A onto At,rfﬁ, we obtain

2, 3]
[1,2][3,1]
= §4(m, 7, ) fA1A24s (€] ~€e5€es -p1 + €3 ~ede] P+ €5 €1 €3 -p3), (4.6)

Atree — 54 (37,

p AT A5 A

as shown in appendix B.

The d = 1 sector. The one-instanton sector contributes to all gluon tree amplitudes

with just two negative helicities. For d = 1, we have to evaluate
0™V (21) VA2 (22) Vi (23) . V™ (2)[0), (4.7)

where, by (B.21]) and (B.29), and because Y/ does not occur in V4(2), we can replace Z7(2)
by Z{ + 271, (as the other terms in Z!(z) will annihilate on the vacuum on either the left
or the right). Thus, for d = 1, by (B.27), the expression ([.7) involves integrals over the 8
bosonic variables Af, A%, ug, %, a = 1,2, as well as evaluating the dependence on the 8
fermionic variables ¢!, ¢, 1 < M < 4, using (8.23).

The vacuum expectation value of currents

(0]J4 (21)J42(21) ... T4 (2,)]0) (4.8)

can be written as a sum of a number of contributions, one of which has the form

fA1A2---An

(Zl - 22)(22 - 23) - (Zn - Zl) (4-9)

and we use this contribution in what follows [R3].
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Thus the d = 1 tree amplitude has the form

At—rgi...Jr S dkkr [0 0(m® = kpA%(2))ethrs (zr)ra
x kik(0le®! (1)1 (21)1% (21)3p* (219" (22)1% (22)° (22)9* (22) |0)
y Ha d2)\ad2/ﬂ fAlAQH.AndzleQ...dZn /d’YMd’YS

(z1—22)(22—23)...(zn—21)

Using that, for a component of the fermion field taken alone we would have
(0le®3! (21)1! (22)[0) = (22 — 21)(0]e™9pL145]0) = 21 — 2,

and integrating over ug, u,

n n 2

2 n n 2
A / H d:’” TTT] oG —kex®(z) H (Z m) 5(2 krzrm> JIEES
r=1a=1 r=1 r=1 a=1

T

A1z An g, dz ...dz
K (2 — 2a)i— 1072 n dyrd
ke =) <zl—z2)(z2—z3> o — )/ M

:/ﬁﬂilﬁé@ Al >H5< i W,,;>5<T"1zm W”“)Hdw

1.1 _ 4 A1A2---And d d
" <7T1 o' (21 ,22)> f z1dzo ... dzy, /d’YMd’YS
) (21 — 22)(22 — 23) ... (2, — 21)

using the delta functions §(m,' — k-A!(2.)) to perform the k, integrations again. Noting
that when 7.2 — (A\2(2,.)/A}(2.))mt = 0, for b= 1,2

b 1- n
_ A (27")77'7" Tra )\ 7T7" 7Tra 27"777’ 7T7"a
§ Ty 7Tra— § )\1(2) 0 —1 § s
r

r=1

2 n n 1=
H 7Tr 7Tra 5 ZpTy Tra
a=1 — r=1 )\1(27.)

can be replaced by the momentum conserving delta function, together with a Jacobian

the delta functions

factor,

AAZ | = AL A2 264 (2, 07,).
Then, with
AQ(ZT) _ )‘g + )‘2—12
M(z) M +AL 2

G = (4.10)

using Mobius invariance, we have that

atree, / H

x [m'm (G — (o))

oo PN 2 )2
H5 CrWr 5 (B " 7rp) ()\é)\Q - AL 1)\(2))2

g fAAAndldey . dg,
(G —C)(CG—¢). (¢ —

C1)/Cl’YMd’}’S (4.11)
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Noting that we can write
A2\ d?\?
(AoAZy = AL AG)?

because the left hand side is the invariant measure on the product of the Mébius and scaling

= dPYM d’YS )

groups, and using the d(m,2 — (,m,!) to do the ¢, integrations,

n
_ 4
AT = 4, ) (mi Pt — Pt pAr Az A H (m 2t = mrpa®mt)

r=1

-1

<1, 2>4fA1A2...An
(1,2)(2,3) ... (n,1)’

= 6 (7, %) (4.12)

with 7 | = 7{.
Of course, this result could also be obtained within the path integral framework. From
this point of view, after integrating out the Y/# fields, the d = 1 sector path integral is

Avree =% / DZ; §((0: —iAz)ZT)
d=1

'/Hdzz‘/quG@SGJAI(Zl)JAQ(Z&)---JA"(Zn)

=1

- dkT’ a a i @ (zp )T
T 5 TLos — hex(en)) etton e
r=1 r,a

(b4 R 0 i )AL s (03

As discussed in section 2, we work in a gauge where the gauge potentials are zero, so the
path satisfies 9;Z1 = 0, and Z!(z) = Z{ + ZI~ from (R.15).

Computing the path integral by replacing DZ; §((0z —iA(Edzl))ZI) with H§:1 dztdzi,
and performing the integrals over Z,Z{, where the fields \%(2), u%(z),v™ (z) are now
given by the solutions Z7(z) = Zé + 271, we see that evaluating the path integral gives
the result obtained from the canonical quantization. Identifying the integration variables
ZOI , Z1 with the variables AD.—15 M87_177/J(])\7/[_17 and performing the Grassmann integration
[ dibopo =1, [ dp_19p_1 = 1, for each M, we find that for the two negative helicities in the
positions 1,2, we obtain (f.19), together with a factor of A_1A_5A3... A4, corresponding
to the polarizations in (f.13).

5. Loop amplitudes

The n-point loop amplitude is a sum over contributions corresponding to instanton numbers
d. We write the integrand of such a contribution as a product of factors:

n

1 A A dog dt i i
Ano,sp - /AnfilAlrf,dAi AghOSti H Prd’/r, Pr = 62 “/T, w = 62 v s (51)

2rImT
r=1

where Ag“d is the part of the integrand associated with the bosonic twistor fields A, y;

.AZ 4 is the part associated with the fermionic twistor fields 1; AgA is the part associated
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with the current algebra J4; A8host g the part associated with the ghost fields; and 7
is pure imaginary. The integration with respect to ag is the averaging over the gauge
transformation u® referred to in (B.1§); the normalization factor 27Im7 will be explained
below. We shall restrict our attention to MHV amplitudes. For these, the fermionic part
.AK 4 Will vanish unless d = 2 and so we shall use this value below.

Twistor bosonic contribution to the loop integrand. Using the vertices (B.39)
and (B.36), the part of the integrand for the n-particle loop amplitude associated with the
bosonic twistor fields, A, p, is

./4272 = /tr <62q°u“° H exp {ikr A (pr)0ra + tkrpu®(pr ) Tra } wL°>

r=1

n 2
dkr — i Wra T J—
X H W He At dwye/dys, (5.2)
r=1 a=1

Here we have rewritten the delta functions §(k.A*(p,) — m,%) as Fourier transforms on
Wrq in order that we can perform the trace on the bosonic variables A%, using the relation
(C.1) from appendix C

n d n
tr | ea0q,00 H ewiZ(pj)gplo | — 4, (d+1)/2 H(S Z Fid(ﬁj, w)w;j | (5.3)
i=1 ‘ =

. 1 i .
where p; =u"2p; = e2miv; | Uj = vj + i /4w, and

o

d(1—n)—k
Fllp) = 32 whembianaan (2)
/2 0/5k/4 g [Qk/cé— 1] (—du, dr), (5.4)
using the notation of (B.29), so that
F2(p,w) = pb3(2v,27),  F2(p,w) = w1 phs(2w, 27), (5.5)

From this we have

A =y /H <ZM (pr, 0 wm> <ZkF (pr, 0 wm>

i,a=1

X 1—[1 dk]jr 1—[1 e~ ™ 4,4 /dYs. (5.6)

for, putting d = 2 in (f.9), we see that we get a factor of u for each of the four bosonic
components of Z. Expressing the second delta functions as Fourier transforms on A{,

2

A?LMQ - U’G/ H 5 (Z krEQ(ﬁr7w)ﬂra>

i,a=1
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r=1a=1 Li=1 a=1 r=1 a=1
n 2 ~ 2 . dk
- uﬁ/H [T6 (kA w) ) H 5<Zk EY (pryw wm>H a3 [ /s,
r=1a=1 i,a=1 r=1 =1 r=1 "
where we have performed the integrals over @,, and set
3 (pryw) = A F2(pyw) + A§FE(py, w). (5.7)

Performing the k, integrations using the § (k:rj\l(p}, w) — er) delta functions,

= w)wl—WQ 25<nmﬂ'w> d’\*/d
N /Hﬂ( orow) )H 2 ey ) LT

As before, given the constraints \(p,, w)m,' = A (p,, w)m,2, we can replace

2 n
FQ(ﬁr w1 Y132 3172\2¢4
6 R Rt sy S b ALRZ 2 32264 (e, 7,
iyl (; A (pr, w) v (A1A2 = AA1)70°( )

so that

n 2
I 1 /- B
A _ 54 _\, 6 152 3132\2 - 1 2 2%a
.Anf‘z = 0% (I, 7 )u /()\1)\2 ) | | - -0 <£(VT,T)7TT — Ty )alzlld A /dyg, (5.8)

r=1
where
~(I/ 7_) _ )‘2(/)7 ) )‘2F2( w) +5‘2F22(ﬁ7 )
’ AL(pyw)  MFE(p,w) + A F5(p, w)
\2£(D 5\2 F2(5
= 16(?’ )+~?7 for £(0,7) = 12(9: ) (5.9)
MED,T) + Ay F3(p,w)
Now we use the delta functions § <§: (O, T — 7Tr2> to do the integrations over v,
in (5.1):
loop 4 6
A = 6 (Xm, 7, /
n,2 H 7_)
132 Y1322 Y qJA ghostdao dr 23a /4 1
X (A1A2 = AAT) oA, A A Gy - Hd /s, (5.10)
where prp = [[_; pr and
- oD, T
gw,r) = (819 )
It is to be understood that in the rest of the integrand k, and v, are determined by
7l ~ T2
kp = =———, Dp,T) = ——, 5.11
o =15 (5.11)

so the second equation determines v, as a function of A%, 7, ap and 72/7}.
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Twistor fermionic contribution to the loop integrand. Now consider the fermionic

part of the integrand,

Ay = kikite(e20ut0 (—1)% 9t (1)1 (p1) 1> (1)1 (01) 0! (p2)12 (p2) 0% (p2) 0" (p2)w') .
(5.12)

If we consider one component of the fermion field ¥ (p) taken in isolation,

tr(e?%uao<—1>aow1<p1>w1<p2>w%) w2 P2 (p1, w)F3 (p2, w) — Ff(p1,w) Y (pa, w)
—3” / & M (p1,w) A (pa,w)

—u"2(§(vy, 1) — (o, 7)) XAZ_ALx2
u”2(12)

kik2 (AT A3 —A3A9)

so that

1,2)%
A, = 2T 5.13
mn,2 ()\1)\2 )\%)\%)4 ( )

Thus, from (b.1(), we see that the factors of u cancel and

n

Aloop , 2>454(27rr7r,~)/ [H

r=1

_AJA _Aghost dao dr
(7 )& (0, 7) | (MAZ — Aaz)z” " 2rlmr

H d®X/drs.
(5.14)

Since

)

: M, m) + X3
1, ) + A
Vr, )

(Vr+1a 1;[ l/r, ) (VrJrla )
=1l

- g(Vra
H §(0r,7) —

r=1

VT,T) = ﬁ (er)Qél(ﬁraT) (5.15)

=1 2 r+1 — Tr41 i, =1 <7'77"+1>
Using this in (p.14)),
loop_ (1,2)%0 (2777’777’ /H§ EDpp1,7) | AL ABDOSE ﬁ 250 LI dagdT
™2 T(1,2)(2,3).. (0, 7) (NAZ_A132)2 dns 2nlmr

(5.16)

which separates out from the rest of the amplitude the kinematic factor present in the tree

amplitude.
From (p.§) we have that
1 65(2v,27)
S =ty o ar)
Using the relations,

203(2v,27)05(0,271) = 03(v, 7')2 + 04(v, 7')2,
205(2v,271)02(0,27) = O3(v, 7')2 — O4(v, 7')2,
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we see that &(v, 7) is related by a bilinear transformation, whose coefficients are functions

of 7, to O3(v,7)?/04(v,7)%. Further, using the relation
91(% 7)202(07 T)2 = 94(V, T)293(0, T)2 — 93(1/, T)294(0, T)2,
we see that &(v, 7) is also related by a bilinear transformation to the Weierstrass P function

w2 10, 7)05(v, 7)]?
Pv,7) = e [92(0,7')4 — 94(0,7')4} + [%] . (5.17)

Using the bilinear invariance of the integrand, this implies

loop <1a2>454(277r7?r)
Az’ = (1,2)(2,3) ... (n,1)

n . A JA gghost 2
x/ HP(VT,T) P(WHJ)] A, A dQAap_HdaodT 5.18)

P (D, T) (AIA2 — AIA2)2 e dys 2rImTt’
as an alternative symmetric expression.

r=1

Regarding L
(3 %)

AL
as the matrix defining the bilinear transformation that takes & = £(i,.,7) to m,.2/m,! for

1 <r < 3, the invariant measure

d>\ _ d§1d&adEs
A2 -2 (G -&) (& -&) (& -&

dvs,
)

loop _ <17 2>454(27"rﬁ'7‘) (53_54) ‘ (gr—fr—i—l) JA rghost dagdTt
mEo (1,2)(2,3) ... (n, 1>/(§3—§1) H , An A pnvrdvaduy 2rIm7t
(5.19)

r=4 gr

For the first non vanishing amplitude, n = 4, noting that

(1,2)(3,4) s

(1,4)(3,2) ¢

and

(& —&)(& &) (G -&)(&—8&)  s) _ (G-&)&-&)
/(51—54)(53—52)6<( —&4)(& — &) - t>d ! (53—51)52 ’

100p (1,2)*0* (8w, 7w,) s (& 52)(53—54) J4 sghost dagdt
A =T 233 A1) ¢ /‘5<<51 (6 — &) >A A H e
(5.20)

Similarly, we can derive a corresponding expression for the n-point loop,

(1,2)"6*(Sm,7,)
2. 3y2(3 -1 (5.21)

- 1 (57" — 63)(52 — 61) <7"7 3> <27 1> JA sohost “ dagdT
. /TH4 ST <(§7" —&a)(&e—-&) (n 1>(2,3>> A AP Hprdvr onTmr

loop
‘An 2
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Because 0, = v, + iag/4m and the integral is invariant as v, — v, + 17, we see that
it is periodic under ag — g + 27Im7. So to average over ayg, we integrate over the range
0 < ag < 27lm7 and divide by 27lm7, which explains the normalization factor introduced

in (B.1).
Path integral derivation. In the path integral approach, working in the gauge A; = 0,
we use the paths given in (R.24) with n = 2 and \(p) = Z%v),u%(p) = Z°2(v),
a=1,29M(p) = ZM*(v),1 < M < 4.

The path integral on the cylinder includes, up to normalization,

n 4 1 2 n
/.Af;’g H dv, = /H debdel Z /0 de <H exp {ik, A" (pr)@ra + z'k:r,u“(pr)ﬂm}>
r=1 I=1 €'=0 r=1
nodke Yy s
« (H kr H e—Z@raﬂrad@ra(H dl/r)> /dVS- (5.22)
r=1 " a=1 r=1

Performing the integrations over c¢f,cl,1 < I < 4, we find a formula analogous to the
canonical expression (f.6), save that the functions FZ(p,,w) and FZ(p,,w) are replaced
with (9[%,1(2147 27), and 6[%?1](2w, 27), respectively, and the o integration is exchanged
for a sum over € and the € integration.

The calculation proceeds as before to a formula similar to (5.8), except that &(v,7) is

replaced with

N

(v, T) + N3 COE)(2021)  6y(2u + i+ ter,27)
= —————== where n(v,7) = — _ .
A7) + A) 012 (2v,2r) 0220+ 3¢ + er,27)

(v, 7)

After integrating with respect to e, the resulting integrand depends on the differences
v — vy, ?nd is independent of €. Then ﬁ(y,j') is essentially £(v,7) from (5.9), since the
factor w4 in {(v,7) can be absorbed in the \* integrations, and e7/2 can be replaced by
iag /2w, de = do/mImT (o, € real, 7 pure imaginary).

In analogy with (B.10), we use the delta functions 6 (7j(vy, 7)m,* — 7,?) to do the inte-
grations over v:

fAﬁ“z H?:l dvy
= 045 27 de ] [Ty o] (W8 = A0 [Ty 23 g s
In the rest of the integrand k, and v, are determined by k, = 7,1 /X (p,, w) and 7(vy, ) =

7.2 /71, The one-loop integrand for the fermionic fields, for one permutation of helicities,

1S

4
AY = ki / [T deg"*ded™ ™ (o) (p2) = %
M=1

Thus we obtain (p.16) as before, apart from a factor of 4.
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Ghost contribution to the loop integrand. The ghost fields in the theory are the cus-
tomary ghost fields, b, ¢, with conformal spin (2, —1), associated with the reparametrization
invariance, and the ghosts for the U(1) gauge fields u,v with conformal spin (1,0).

The partition function for a general fermionic “b, ¢” system with conformal dimensions

A and 1 — A respectively is
1 oo
tr(bOCOwLO’Tit(—l)F) — w2 | | 1 — "

where the central charge is 12A(1—X) —2, and L(z) = =X Xb(2)c (2) X + (1 =) 2b/'(2)c(2) <.
So

[e.9]
tr(bocow "2 (—1 Wiz H (1—w™)? =n(1)?.
and the reparametrization and U(1) ghosts each contribute this factor to the integrand:

The factor of (—1)f is included so that the ghosts have the same periodicity as the
original coordinate transformations. See Freeman and Olive [R3]. The by, co insertion

projects onto half the states in the b, ¢ system; without this projection, the (—1)f would
force the trace to vanish.
So the total ghost contribution is
AEROSE = (1), (5.23)

6. Current algebra loop

For the final piece of the integrand of the loop amplitude, we compute the one-loop ampli-
tude,

(T (p1) T (p2) ... T (pa)w™), (6.1)

for the current algebra of an arbitrary Lie group, G,

[T TO) = if TG+ kMO, T p) = Jap "L (6.2)

We calculate this using a recursion relation, and will present the derivation in a future
publication [[9]. Relevant discussion is also given in [4, B§. The amplitudes can be
expressed in terms of the T7-dependent invariant tensors,

tr(JSL IS L Jgnwte), (6.3)

which themselves can be expressed as products of (constant) invariant tensors and functions
of 7. We note that (p.J) is symmetric under simultaneous identical permutations of the p;
and a;. The structure of the loop amplitude for n > 4 is best understood by considering
first the zero, two and three-point functions. (The one-point function necessarily vanishes.)
In what follows Lg denotes the zero-mode generator for the Virasoro algebra associated

with the current algebra.
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Fermionic representations. We begin by considering the case where J%(p) is given by
a fermionic representation,

7

I p) =5

a1.i i a __ i a1.i1.]

1

[T, T = fo°T¢,  tx(T°T") = —2k6", b (p)=> blp "2, (6.5)

where 7%, 1 < a < dim G, are real antisymmetric matrices providing a real dimension
D representation of G, and the bl,r € Z + 1, are Neveu-Schwarz fermionic oscillators,
(b, b0} = 6196, 5, bL0)y=0,7>0, (I =0b",.

For this representation, the zero-point function,

[e.e]

x(7) = tr (wLO) = H(l +w®)P, (6.6)

1
5=3

while the one-point function vanishes, tr(J%(p)w?), as it does for any representation.
The n-point one-loop current algebra amplitude is computed by using the usual recur-
rence relation, for calculating tr(bf}1 e bf,z w™) in the free fermion representation, obtained

by moving bf,z around the trace,

(0} - b w™) = 5 — > (D) 8t (B b bl bt apho),
=1
Using this, we obtain the two-point loop,
tr(Je b Loy _ kX(T)éab 2
r(J*(p1)J" (p2)w™) . XF(v1 —v2,7)%, (6.7)
where -
627ri7"1/ + wr6—27riru i 93(]/ ,7_)
= = —05(0,7)64(0 ey 6.8
=3
The three-point loop,
a b c Loy _ RFX(T) o1 39 13
tr(J*(p1)J”(p2) T (p3)w™) = ————XEXFXF (6.9)

P1P2P3

and the four-point loop,

tr(J%(p1)J" (p2)J(p3) I (pa)w'™)

.
= 7/)1);2(/);4 o UNEXE XE XE — o NE X X xE = o X X X X

25 ()2 () K2 0050 ()2 (3?4 K2 ()2 (0GP (6.10)
where XQZ = xr(vj — v, 7) and

oed — tr(ToT’T°TY). (6.11)
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General representations. The amplitude (6.1) can be evaluated by means of recurrence
relations between functions

tr (ng T T T (1) T2 (p) . TP (pn)wL°>

that can be established using the cyclic properties of the trace and the algebra (f.9), from
which it follows that

[J2, J%(2)] = iz™ fT¢(2) 4+ kmz™"159.
For example, in this way it follows that

tr (J&J (p1) ... J" (pn)wLO) (1 —w™)

=iy [ <Ja1 (p1) - T (1) T () T (pjia) - J“"(Pn)) Py
j=1

thm Yy 69te (U (p1) ... JY (pg-) T (pjn) T () P (6.12)
j=1

and, hence,

tr (J*(p)J* (p1) ... J*" (pn)wLO) = p ltr (Jg T (p1) ... ™ (pn)wLO)

A aa a s a’. a; a
+i Z ! ftr(J Hpr) - T ()T () T () - T ()™ )
Ao
+k§j B2 = W) s 1 (195 () .. T (03 1) (ps1) - T (p)w™®)  (6.13)
where
627riml/ 0 eQﬂimV wme—QmmV i 0 (l/) 1
A = = = L2 6.14
(1) mz;é:ol—wm mZ:l 1—wm 2w 01 (v) 27 (6.14)
27rzm1/ 27rimu m ,—2mTimy
+ we 1
Ay(v,7) = Z Z m — = %A’ (v,7).  (6.15)
m##0

These functions relate to the Weierstrass elliptic functions by
167(0,7)
6 01(0,7)’
C(v,T) = —2miA1 (v, 7) — wi + 2n(T)V, P, 7)=—-"(v,7). (6.17)

Py, 1) = —4n?Ay(v, 7) — 2n(7), n(r)=— (6.16)

Using (p.139) and similar relations we can establish general formulae for the two-, three-
and four-point one-loop functions.

We write the zero-point (partition) function as

tr (w') = x(1). (6.18)
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Because it is isotropic, we can write

tr <J0 Jow LO) = 6@ () where ) (7) = tr (J§Jgw LO) .

1
dim G

Then the general form of the two-point current algebra loop is

tx (7 (o) P20t = T [y )2 4 ()] (619)
P1P2
where @ B
f(T) — X (T) + 63(077—) (6.20)

kx(t) — 4m263(0,7)

Noting that we can write

tr (g Jgwt ) = st (g, H)Iswr) + st ({06, S} Tgw™)

we have

tr <J8J8JOCMLO) - %ifach(Q) (1) + %dach({ﬂ) (r),

where d®° is a totally symmetric isotropic tensor, which may vanish, as it does for SU(2),
but not SU(3). Among the simple Lie groups, only SU(n) with n > 3 has a symmetric
invariant tensor of order 3 [2§]. Then the general form of the three-point current algebra
loop is

t(J%(p1) I (p2) T (p3)w™)

-kfabc ]
- ﬁ {X%lx?}v?x? - é (¢ + 7 +¢7) f(T)} *

dach(3) (7_)

6.21
2p1p2p3 (6.21)

where (¥ = ((vj—v;). The recurrence relations do not manifestly maintain the permutation
symmetry of the loop amplitudes but the final result is necessary symmetric and can be
put into this form.

The general form of the four-point loop can be put into the symmetric form

tr(J(p1) " (p2) I (p3) T (pa)w"®) prp2pspa
= {56 () [0 + 7@ f+fﬁﬂ—%”ﬁﬂ%ﬁ0
8 (R [0 + FENOEY + £ = XP () x()
857 (I () [0 + IO + 1) = x? ()%/x(7)
+tr(JG I TS Jdw™o)g

1
_% <O_abcd + O_adcb + O_acdb + O_abdc + O_adbc + O_acbd> X(T)H%(O,T)Hi(()ﬂ')

1
<0“‘de + G“dd’) X(7) {Xi?x?x‘}‘*xi‘vl

Pay = Pap\ (Pas = Pu 1
167‘1’2 6,24 (1) (7324 — P32 Py — Pu1 + 472 F(r)Paa
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1
— (07 + o) Zx(r) {X?X%‘X‘i?x%l

1 Pé4 - 7332 Pél - P{}Q 1
167 £ <7324 —Ps2) \Pa1 — P2 i Jr)Pa

1
_ <O,adbc +0_acbd) §X(T) {XMX%X%«?’X%}

Pay — Pis\ (Pia— Pau 1
167r2 6,24 (") <7724 - 7732) (7714 - 7731) * —f(T)P34}
_4_X(3)( 7) [O.abcd (421 F R +<14) | gadeb (<41 b By 412)
to acdb (C31 + C43 + CZ4 + C12) + O,abdc (C21 + C42 + C34 + C13)

_|_O_adbc (<41 + <24 + <32 + <13) + O_acbd (431 + ng + <42 + <14)] }’ (622)

where P;; = P(vj—vi, 7), Pj; = P'(vj—vi, 7), 0 abed ig given by (B.11)) and tr(JgJEJ§ Jdwro)g
is the symmetrization of the trace tr(JO JO Jg Jd Lo) over permutations of a, b, c, d.
We will now specialize to the case of a general representation of SU(2). In this case,

tr(J*(p1)J"(p2) I (p3) T (pa)w") prpap3pa
= {876 (X [0R)? + FENOEY + 7] =X (1) /x(7)
+00e5 () (02 + IO + £~ (i)
+018% (X0 [0 + FENOEY + 1)) =X () /x()
[O_abcd_|_ acdb+o_adb0] <4_189§(0,7_)92(0’ ) 1X(4)( )> X(T)

6 kx(7)
G

—oed (1) {X?X%BX%X% t32 P13+ Pos
_ (Clg L3y C21) (Clg Fo g <41) _ (C24 bty <12) (<24 LB <32) }
—o°® (1) {X}??’X%l FXF + % P14 + Pas
_ (Cl4 Loy C21) (CM LB <31) _ (ng F o3y <12) (<23 by <42) ] }

o x(r) [ EXENE + % Pi2 + Pss (6:23)

— (¢ PG (R R ) = (P T ) (R ) |

7. Twistor string loop

We now assemble the parts for the one-loop MHV gluon amplitude of the twistor string.
The fact that the twistor string has delta function vertices leads to the form for the final in-
tegral that is a simple product of the loop for the twistor fields and the current algebra loop.
We have provided several equal expressions for the twistor field loop Alncigp in (5.19), (6.19)
- (6:29). These forms were given for particles 1,2 having negative helicity, and we saw that
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the expressions naturally divide into two factors: a piece equal to the kinematic factor of
the tree amplitude multiplied by a function of s and ¢. For the four-gluon amplitude, if we
consider the form given in (p.2(), we have

1oop (1,2)'8'(Ememy) s (& —&)(E —&) | s oy dOéodT
Aaz” = - (1,2){2,3)3, ><4,1>t/5<(§1—§4)(§3—€2) i 75) Hpr 2

where we can take & = 05(20,,271)/02(20,,27), Uy = vy +iap /47 and .Ai is given in (6.22)
for a general compact Lie group. We expect the gluon loop amplitude Aloop to be related
to the field theory loop amplitude for gluons in N = 4 Yang Mills theory coupled to N = 4
conformal supergravity. It is believed this field theory requires a dimension four gauge
group to avoid anomalies [RU]. We hope that a better understanding of that may follow
from further analysis of the loop expressions computed in this paper.
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A. Gauge potentials

An example of a potential on S?, for which A, = A; =0, is

inz -
AT = —ma AS =0,
A = ﬁ A =0,
AS =0, As = —ﬁ—;,
AZ =0, Az = ﬁ

Then A7 — A5 = —ig™ g, Ai — .[llf = —ig 'ougforg=2"",g=2".
And an example of a potential on T2, for which A, = A; =0, is

S s
A.(z,2) = o (z — 2), A.(z,2) =0,
N T (0 5 amn o
Az(z,2) =0, Az(z,2) o (z — 2),
Then
A+ 0,5+ @) — Ay (2, 2) = —ig; (2)0,9u(2),
Ay(z+a,zZ+a) —Au(z,2) = —ig;l(z)auga(z)
for

mn(a—a)

ga(z) —e T(Z+ )+i7rnm1n1+ina7

Gal2) = € T () imnmam i
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B. Twistors

A Riemann surface world sheet, which we use in this paper, corresponds to complex target
space fields Z! that transform under the conformal group SU(2,2). The spacetime metric
is n = diag(1,—1,—1,—1), and €2 = —?! = —¢;5 = €31 = 1. The coordinates are

z=2"—x-0, with 2t = 2, and detx = x#z,. Then

2 (az + b)(cx + d)~ ), (Z Z>T<102 _012><Z 2>:<102 _012>,

a b
h e SU(2,2).
where <c d) (2,2)
The two 2-spinors (7g,w®) define complex 2-planes in complexified Minkowski space
by m = zw. Under a conformal transformation, the twistor

7'(' a b ™
— .
w c d w
Real Lorentz transformations are given by x + azal, 7 +— am, w + dw where d = (a!)~!
and a,d € SL(2,C). For any vector p*, we can write

p =plo —( P-pp Hp) (Paa)s P =p
—_— —_— . aa - b
# —pt—ip*  pO4p?

ab ab ab ab

where € PaaDPyj, = 2det(p) = 2p,pH = 2p%, and €

transformations are given by p — apa’, a € SL(2,C); and the complex Lorentz transfor-

Paady;, = 2p - ¢- Then real Lorentz

mations are p — apb, a,b € SL(2,C).

If p?2 = 0, we can write p = AT, i.e. pea = AeNg. Similarly, if ¢ = 0, Apiy = Mo
then 2p - q = €™\ edi’j\dﬁb = (\, ) [\, @], where (A, p) = €®Xqup, and [\, fi] = edi’j\dﬂb.
It > pr = 0, with proq = TraTra, then 370 | w0 e = 0; and 3, (s7)7q = 0 and
> rzslsTImeq = 0, where [rs] = [T, 7], and (rs) = (m, 75). e.g., for n = 3, ma/m2q =

~[2,3]/[1,3].
()=~ D)

Under conformal transformations,
A a b A

= )
jz c d)\p

where ¥y = (Z;) and ¥, = (Zi)

Polarizations. To compute the polarization dependence of the amplitudes as in ([L.§),
we note that s, and 5, are reference vectors that scale as the momentum: sz, 7® ~ wu scale
up and 5,,7* ~ u~! scale down. The polarization vector €., does not scale, so A_, goes
as u=2 and Ay, as u®. Hence the vertex operator (m!)=2 |A,, + (7/{—1)4 P2t A r}
does not scale. Then

€] - 6263 p1+62 6361 p2+e3 6162 D3

3
=A_1A A3 (7715253b771a7T3b772b) A1Ap2Ass [1[3}[]31}
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To derive this we use momentum conservation Zi’:l TraTre = 0, and properties of the

. 2 .
Penrose spinors such as T, = 0, where m,.q = € 7t and 7@ = €%r,,. In particular
a=1 ra ra aby r rb )

consider 53, Zi’:l = 0 to find 53} = [23]/[12], and similarly 53m, = [23]/[13].

C. Trace calculations

Bosonic trace. To calculate the M-point trace, as in (B.1§) let

)

®(w, k) = tr <e€I0 k120 90 pik2Zo 40 pikaZo g a0 piw1 Z(p1) giw2 Z(p2) einZ(PM)wL0>

SO J
= [Tok)
=1

because only the states with no non-zero modes contribute to this trace. Let
D, (w, k) = tr (BQO etk120 540 gtk Zo 40 gikaZo, a0 Zneiwlz(ﬂl)eiwz(m) o einZ(PM)wL0> ’

SO
O ®=iu®_q, ... Oy ,P=iud_,, ... Op®=1iud,

d d

using
eNZ,e” =7, .14, w0 Zu" =417,

Then, using the cyclic property of trace,

D, = uw"®,,_4 = uMtm/dyntd=m)ntm)/2dg o 0<m<d, n+ma multiple of d

and
00, ® =i Y00 oo ®upy ™ = 13000 Yonl o Pan—ipy
_ zd 1®_Zz U w2n(d(n+1) 22)p;dn+i
:sz 01(1) S oow2(n 1)(déf2i)un—i/d(%)_dn‘”ui/d
:sz 1‘I> Fd ( fl/dpﬁw)uz/d
_ ZZ le( 71/d ]’w)ufn/daknq)
where
o 1 N d(1-n)—i
Fid(ij) _ Z w3 (M= 1D(d(n—2)+2i) <_a>
w
n=-—o0o

So ® depends on k;,w;, 1 <4 <d,1 <j < M, through
' M
u Uk + Z F(pj, w)wj, where p; = ufl/dpj,
j=1

so that

d M
®(w, k) = uldHD/2 H 6 | uk; + Z F(pj, w)w;

i=1 j=1
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and the M point function

tr <6dQOua0 eiw1Z(p1)6iW2Z(pQ) o einZ(pM)wLo)

= ®(w,0)
d M
— gla+n/2 H5 ZFid(ﬁj?w)Wj (C.1)
i=1 j=1
d( A d(» p -1
Fi(p1,w)  F{(p2,w) F{(pa,w)
Fd(pr,w) Fi(pa,w) ... Fi(pa,w) d
= @D/2| . . [T 6twm),
. . oo . m=1
Fé(pr,w) Fd(pa,w) ... F(pa,w)

(C.2)
where the last equality (C.2) holds provided that M = d.

Comparison with bosonic tree amplitudes. We can compare these results for cor-
responding results for tree amplitudes,

(Ofea0iorZ (o) o)),

We start with
d

(OfeoehaZ—a . ¢koZ0)|0) = TT6(k:).
1=0

Let

d M
@ — <O‘edq0 He’ik‘iz_i H eiUJjZ(pj)’0>
i=0 j=0

Byt = P 010 T e Ty 20 240}
= 2i—0 0k, .

These provide M + 1 linear partial differential equations in the M + d + 2 variables k,w,
implying that ® depends only on the d + 1 variables

M .
kit pjw;
=0

so that
d

M
o=]]6[ki+D_rlw|. (C.3)
j=0

1=0
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Thus

d M
<O\edq°ei“MZ(pM) .. ewoz(m)]m = H5 Zpéwj
i=0 \ j=0

11 1]t
PO P Pd
= H 6(wy)
. Jj=0
g ot o4
d
= H (Pz—PJ)ﬂH‘S(WJ)a (C4)
0<i<j<d 7=0
provided that M = d.
Fermionic tree amplitudes. Starting from
0] Z_y... 2 1Z00) =1,
so that
017 . Z oy Zpo|0) = €y mings
where €y, n,n, is totally antisymmetric and nonzero only if (ng, ..., n1,np) is a permutation

of (d,...,1,0) with ¢4 10 = 1. Then

o
(0le®0c(pg) . .. c(p1)e(po)]0) = Z P pP a0 7y 2y D |O)

nj:foo
d
= Z End---mnopzd e P?IPSO
n;=0
1 1 ... 1
po P1 - Pd
I
= H (pi — pj)s (C.5)
0<i<j<d

which can be compared with (C.2).

Fermionic loop amplitudes. Consider
tr (a0 (~1)N% Z(pa) ... Z(pa) Z(pr)w™ ),
noting that

tr (eoya0(—1)Nwz_,. .. Z_ 57 qwlo)
= u (=1)Ntr (ed0Z_y. .. Z_9Z_quto(—1)Nwoylo)
=u~ U (=1)NN0led0 Z_y... Z o7 quo(—1)Nw0qylo|0)
= u_d(_l)Nd’
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where NV is an integer, because again only the states with no non-zero modes contribute to
this trace.

If ¢(Z) denotes an arbitrary sum of products of the Z,, each of length d — 1,
¢, = tr <edq°ua°(—1)N“°chp(Z)wL°) = ()N Ly e,y

using the cyclic property of trace.
So, as for the bosonic traces,

By = w2 dOAD2M G g <y < g
where 7 = (=1)N*+9~1y and, again,

tr (edqouao(_l)Nao Z(p_])SD(Z)’U)LO)
— d—
=y 1 q>7m Z;‘:’, (g sr(d(nt1)—2 )p]fdner. d
Zd 1 (I)_m Z;L.O:ioo € wg(n 1)(dn—2m), n—m/d (/;U_J)f n+m ym/d
= 22;0 u™/dtr (eda0y o (—1)Nw Z_,o(Z)who) Fde  (u=p;,w)
where € = (—1)N+4-1 and
e}

F,flf(p,w) _ Z Maps (n—1(d(n—2)+2m) <£

w

>d(n71)fm

n=—oo

Writing p; = u_l/dpj, it follows that

tr <edq°ua°(—1)N“°Z(pd) . Z(pQ)Z(pl)wL())

d d
= Z tr<edq0uao(_1)Na0Z7md e mez mel >H mel /dF —-m +1(p-7’ )
m;=1 j=1
— _(d+1)/2 Nd Z Hemd .mami d mJ+1(pj’w)
m;=1j=1
d d
= w2 N T emgemam Fi 115 w), (C.6)
mj=1j=1

provided that N = 0 when d is odd and N = 1 when d is even, because then ¢ = 1 and
Fil(p,w) = Fi(p,w). ie. a factor (—1)% is included when d is even and no factor of
(—1)N % js included if d is odd. In particular, in this case, there is a precise cancellation
between (C.2) and (C.5) in the case M = d. More generally, for M # d, the overall
factors of u cancel and the functions F4(p,w) involved are the same. We shall use this
factor in computing the trace for the twistor string loop, and find agreement with the path
integral derivation. Since [@Q, aé] = 0, it still holds that only states in the cohomology of Q
contribute to the trace following the discussion at the end of section 3.
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D. Current algebra loop from recurrence relations

We outline the derivation of the three and four-point current algebra one-loop ampli-
tude from the recurrence relations described in section 6. For the three-point function,
from (.19) and (B.13),
tr(J*(p1)J%(p2) J¢(p3)w™®)
= if“bc(plmps)*l{x(m (1) (A1(v12,7) + A1 (23, 7) + Ar (v, T))
+kx(7) (—Aé(szs,T) + (Ar(vi2,7) + A1(’/31,7’))A2(V23,7')) }
dabc
+2P1P2P3 X(s) (7)
=i f*(p1pap3) !
{ (X(Q)(T) + k‘X(T)AQ 93, ’7')) <A1(V12, ) + Al(ljgg, ’7') + Al(Vgl, 7'))

(
4m kx (7 )avA2(V23,7')} + Qpcfapl;cps x® (1)

where v;; = v; — 14, and from (6.13) we encounter propagators in addition to those in
section 6:

Ai(v,7) = A (v, 7) + %
0 ()’ 04 (0,7
8ol 7) = A7) = 7 () = 3 7) + 25

27rzmuwm 2mimuy

ALV, T) = Yo Tz = Lomo 0wz — D1(17)

=10, 7) = HAI 7)) + 5 — i o

A, 7) = zmﬂ% L0, A1 (v,7) = =0,AL (v, 7)
= 16ir3 o (Vﬂ—)Gl( 0)(1/07-)(1/ D7) 4#28 AQ(V T) Al(V7 T)AQ(Va T) .
Let

Pv) = —4n’x%(v,7) — 051(0,7)04(0,7) — 472 x2(r) ,
x(7)
which depends on the partition function x(7) and the propagator Y@ (1) of a given rep-
resentation. It is related to the standard Weierstrass P function P(v,7) by an additive
function of 7. Then

tr (J%(p1) I (p2) J(p3)w)
= i (p1p2p3) kX (7)(— 1) { 2P (CF 4+ ¢ 4+ C12) + Phy |+ XD (7).

Using the Weierstrass addition formulae, which hold for both P(v,7) and P(v, 7):

201 p2P3

23 _ 13 21 7)13 Pay

(B = (1342 4 1Pl
fpl — 7323[7321 7313}"‘73217313 73217313
23 P13—P21 )

we can write

tr (J%(p1)J°(p2)J°(ps)w'o

~ P ’}5 ~ abc
= if " (p1p2ps)~ x(7) 16ws){7’237{§ i +7’éa} * i X (7)

Po1Pls—PL P abe
— i (p1 paps) X (7) (— o) { PRI o A7)
()X

)
(=
(=3
= if"(prp20s) (T [N — ok (¢ CR 4+ () f(7)

abc
+(p1p2p3)” 12pcipwsx(3)( 7)
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where the last line follows from standard theta function addition formulae [R7]. In a similar

way, we compute from the recurrence relation the four-point loop as

tr (J%(p1)J*(p2)J(p3) T4 (pa)w"0)
:(p1p2p3p4)*1{5“b56d([X;()T + kA (112, )M (1) + kx(7)As(vas,7)]
X))
aeeat ([ X7 4 kg1, )| [XP(7) + k(7 Aa(var, 7))
AP ()?)
atste ([ X264 kAa(a 7| [W®(7) + kx(r) Aa(vas, 7)]
X))
Htr(JEIL IS Jdwlo)
e fete | = 1 (r) A (v, 7)
+ <A%(V23a7) - A%(V%T)) (XB () + kx (1) A2 (v34, 7))
—Al(l/127 T) [X(z) (T)(Al(l/gg, T)+ Al(y34, T)+ Al(l/42, 7))
+hx (7) (= A3 (v3a,7) + (A (vas, ) + A1(’/42aT))Az(’/:szlﬁ))]}
2 e | = XD (r)AL (31, 7) + bx(7)As (v31, 7)
—x3(r )AI(V?A, T)AL (o4, T) + kx(T) A (34, T) A1 (v24,T)
+hx(T)A (V34, T i i
+A1 (13, 7) XD (7) (A1 (v3,7) + A1 (134, 7) + A (va2, 7))
+hX(7) (= A3 (v3a,7) + (A (vas, ) + A1(’/42aT))Az(’/:szlﬁ))]}
+f“dfbce{ X (1) AL (vsa, 7) + kx(T)As(vss, T)
>§()( )Al(l/34, T)A1 (ve3,7) — kXN(T)A%(V34,T)~A1(I/23,T)
—Ay(v14,7) (XD () (A1 (va3, 7) + A1 (v34,7) + Ay (a2, 7))
+hx (T) (= A (vsa, 7) + (A (V23,T)+Al(V42aT))A2(V34aT))]}
FEXO(r) (f2PdeotD (13) + FocdeIA (13) + F2d A (1)
—|—f§cdaedA1(I/23) —|—f§ddaceA1(V24) +fecddabeA1(V34)>},

where an additional propagator occurs,

2mimy

B3(,7) = o P = —HAMw ) + 750-ALw,7)
= —3A}0 ) = 1A ()AL ) + 0, AN T) + g0r (05

This form of the four-point current algebra loop can be expressed in terms of the Weierstrass
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P functions:
tr (J(p1)J"(p2)T(p3) I (pa)w"®) p1p2pspa
= {5‘“’5“[ (ﬁk%((ﬂ P12P3q — Xﬁl(T)(X(Q) (7'))2)
+69¢6 ( Tz kX (1) P31 Pas — x (1) (XD (7))?
+5ad5bc Tom 2k‘2 ( )75147532 —X_l(T)(
—i—tr(JgJO Jg JO )
abe rede Paa Pl — Pl P PL—Ply | PutP,
e e k() | PR (- o+ e )
+473347>32}
@ (7 07(0,7) ) 2 @) (r
+hx(r) { = (33 + o) + 030, 7)040,7) + $38)
) (r 05
~t (e + kg ) (050.7) — 00,7 }
ac ¢bde PagPhy—PhyPas (Ply—Ph | Phyi—P!
i P () PR (Bl + S )
—4P34(Pos + P32)}
xP (1) 1 0200\% 1 4 1
+kx(7) {2 ( i meg,(o,T)) — 5705(0,7)05(0,7) — 5
@) (7 03
+% (ﬁ:x(g—)) + 471r2 93((0 T))> (04(0 T) 02(0’7—)) }}
+ix®)(7) <f§bdeCdA1(V12) + feed A (n13) + [0 A (114)
—|—febcdaedA1(V23) 4 febddaceAl(Vm) 4 fecddabeAl(ViM)) }

xP (1)
kx()

We introduce traces over the group matrices to express the combinations of structure
constants and d-symbols that occur in the four-point loop. For ¢@¢d = tr(T*T*T°T?),

O.abcd _ O.adcb + O.acdb _ O.abdc fcddabe
bed dcb db bde __ b ped
_gabed _ yadeh | yacdb 4 sa c_2kfg fc e

The symmetrization of the trace tr(JngJO Jd Lo) over permutations of a,b, ¢, d is

tr(JgJE IS Tdwro)
(tr(JO JO IS Tdw LO))S
(dedabe + f dace + f dade) X(3 ( ) (fbcfade feCdfabe) X(2) (T)

Then the four-point loop can be written in the symmetric form (|6.22).
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